一、dx在数学里什么意思

dx是对x的微分

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小。

那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

扩展资料:

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。

参考资料来源:百度百科-微分

二、高数dx什么意思

dx是对x的微分 也可理解为“微元”,即自变量x的很小一段,或者x轴上很小的一段(很小的意思是,没有比它更小的,但它不等于零)

三、dx指的是什么呢?

dx是对x的微分,也可理解为“微元”,即自变量x的很小一段,或者x轴上很小的一段(很小的意思是,没有比它更小的,但它不等于零)。微分的几何意义,就在于它可以在局部用直线去近似代替曲线,误差只不过是一个关于dx的无穷小量,可以忽略不计。

设函数y=f(x)在x0的邻域内有定义,x0及x0+Δx在此区间内。如果函数的增量Δy=f(x0+Δx)-f(x0)可表示为Δy=AΔx+o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,注:o读作奥密克戎,希腊字母,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=AΔx。

函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数y=f(x)的微分又可记作dy=f’(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

四、高等数学中dx是什么含义?

dx是对x的微分

也可理解为“微元”,即自变量x的很小一段,或者x轴上很小的一段(很小的意思是,没有比它更小的,但它不等于零)