一、逆矩阵怎么求?
逆矩阵的求法主要有以下几种:
其一是利用定义求逆矩阵
定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用:
其二是初等变换法
求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得
(1)P1P2.......PsA=I,用A的负一次方右乘上式两端,的:
(2)P1P2.....PsI=A的负一次方。
比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。具体应用如下所示:
其三是伴随阵法
以上是求逆矩阵较为常用的三种方法,具体使用哪种方法,根据题目的要求而定。
二、怎么求矩阵的逆矩阵
求矩阵的逆常用的有如下三种做法。经济数学团队帮你解答,请及时采纳。谢谢!
一、公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。
二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。
三、猜测法:如果能通过已知条件得出AB=E或BA=E,则B就是A的逆矩阵。
三、求矩阵的逆有几种方法
一般有2种方法。
1、伴随copy矩阵法。a的逆矩阵=a的伴随矩阵/a的行列式。
2、初等变换法。a和单位矩阵同时进行初等行(或列)变换,当a变成单位矩阵的时候,单位矩阵就变成了a的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵a是否可逆(即a的行列式是否等于0)。
伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。
四、求矩阵的逆的三种方法
求矩阵的逆的三种方法:1.待定系数法、2.伴随矩阵求逆矩阵、3.初等变换求逆矩阵。 扩展资料
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的'计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。